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The Langevin equation describing Brownian motion is considered as a 
contraction from the more fundamental, but still phenomenological, descrip- 
tion of an incompressible fluid governed by fluctuating hydrodynamics in 
which a Brownian particle with stick boundary condition is immersed. First, 
the derivation of fluctuating hydrodynamics is reconsidered to clarify certain 
ambiguities as to the treatment of boundaries. Subsequently the contraction 
is carried out. Since Brownian particles of arbitrary shape are considered, 
rotations and translations are in general coupled. The symmetry of the 
6 • 6 friction tensor Fib(t) is proved for arbitrary shape without appeal to 
microscopic arguments. This symmetry is then used to prove that the fluctua- 
tion-dissipation theorem on the contracted level (nonwhite noise in general) 
follows from the corresponding statement on the level of fluctuating hydro- 
dynamics (white noise). The condition under which the contracted description 
reduces to the classical Langevin equation is given, and the connection 
between our theory and related work is discussed. 

KEY WORDS: Brownian motion; fluctuating hydrodynamics; Langevin 
equation; fluctuation-dissipation theorem; autocorrehtion functions. 

1. I N T R O D U C T I O N  

T h e  f i rs t  success fu l  t h e o r y  o f  B r o w n i a n  m o t i o n  was  d u e  to  E i n s t e i n  a n d  to  

S m o l u c h o w s k i 2  I n  fac t ,  all  t h e  c lass ica l  e x p e r i m e n t s  o n  t h a t  p h e n o m e n o n  

1 Institute for Theoretical Physics, NTH, 7034 Trondheim, Norway. 
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Some of the classical papers on Brownian motion, together with further references, can 
be found in Refs. l a  and lb.  
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were adequately described by the Einstein-Smoluchowski formulas. Never- 
theless, the validity of their theory is restricted to time scales on which the 
decay time of the velocity of the Brownian particle (B) is negligible. Since 
this decay time is typically 10 -7 sec, the corresponding restriction was 
naturally of no great concern to contemporary experimentalists. 

In an attempt to go beyond the Einstein-Smoluchowski approximation, 
Langevin, however, proposed his equation, which in the absence of external 
fields reads 

m d U / d t  = --TU(t) q- F(t) (1) 

Here m is the mass, U(t) is the velocity of B, and 7 is the friction constant. 
For  a spherical particle in a fluid where the mean free path is small compared 
to the radius R of the sphere, 7 is assumed to be given by Stokes's law, i.e., 

7 : 67rr/g (2) 

where ~/ is the viscosity of the fluid. Finally, the fluctuating force F(t) with 
vanishing mean is assumed to have a white spectrum, 

(P~( t )P j ( t ' ) )  : 2 k T  7 3~j ~(t - -  t ')  (3) 

where k is Boltzmann's constant, T is the temperature of the fluid, and ~ij 
and 3(t) are the Kronecker and Dirac deltas, respectively. 

The Einstein-Smoluchowski theory follows from (1)-(3) as a limiting 
case for t >~ rn/~,. In addition, the Langevin equation predicts the velocity 
autocorrelation function 

Cv( t )  ~ (U~(O) U~(t)) --- ( k T / m )  e - ' ' / ~  (4) 

The Langevin equation has been extremely fruitful in statistical physics, 
and its immediate generalizations play a central role in all linear theories of 
fluctuation phenomena. As an important example, one can quote the theory 
of Gaussian Markov processes used by Onsager and Machlup <2) in their 
formulation of first-order nonequilibrium thermodynamics. A special case 
within this general framework is that of linearized, fluctuating hydrodynamics 
due to Landau and Lifshitz ~8) and Green. <a) 

Nevertheless, the validity of the Langevin equation in its original 
context of Brownian motion is not proved by the success of the general point 
of view it represents. What is in particular open to criticism is the use of 
Stokes's steady-state friction law (2). Whereas the Markovian character of 
Navier-Stokes hydrodynamics seems firmly rooted ~ in the basic conservation 

4 Not so firmly rooted as one used to think, however. Difficulties are encountered in the 
two-dimensional case. See Ref. 19. 
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laws, the instantaneous friction (2) has the status of  the simplest possible 
assumption consistent with the Einstein-Smoluchowski theory. 

Over the last decade several attempts have been made to derive (1), or its 
Fokker-Planck equivalent, as a limiting law from the Liouville equation for 
the (N -~ 1)-body problem. 5 In this way it has been shown that (I) is indeed 
correct to lowest order in the parameter m~/m, where m s is the mass of the 
fluid particles. Although formally correct, these derivations are somewhat 
misleading since, as will become apparent, the relevant small parameter is 
not ml/m, but O/p~, where p is the mass density of  the fluid and PB = m~ VB = 
3m/4rrR ~ that of  the Brownian particle. 

In fact, it was pointed out already by Lorentz (7)6 in his lectures in 1911-12 
that the consistency of  (2) can be discussed within a purely phenomenological 
framework. His order-of-magnitude estimate, based on standard hydro- 
dynamics, immediately showed that (2) can only be a good approximation 
provided that p/pB is small. This important insight subsequently fell into 
oblivion, and was only revived very recently (s) when the newly discovered 
tails (9-1~) ~,.~t-8/2 in the molecular time correlation functions prompted 
reconsideration of exponential decays like (4). 

Lorentz's argument was restricted to the friction term in (1). The 
complete Langevin equation can be discussed on a purely macroscopic basis, 
however, if one starts with a Brownian particle coupled by stick boundary 
condition to a fluid governed by fluctuating hydrodynamics, and proceeds 
to contract the description to the level of the dynamical variables of  B alone. 
This scheme is implied in a calculation by Zwanzig (I~) and was stated explicitly 
by Fox and Uhlenbeck. a3~ The result of these derivations was again (1), at the 
expense, however, of  the essentially unjustified assumption involved in the 
neglect of time derivatives of the fluid fields. 

In this paper we reconsider the approach to Brownian motion outlined 
in the previous paragraph. Since we shall not neglect time derivatives of the 
fluid variables, the velocity field will not automatically be divergence-free. 
To avoid complications that might obscure the central issues, we shall, 
however, confine our attention to incompressible fluids. This restriction will, 
of  course, influence some of  the detailed results, but the essential features 
remain unaffected. The equations defining the linearized Navier-Stokes 
description are given in Section 2. 

In the original derivations of fluctuating hydrodynamics, boundaries were 
not considered, whereas they play a crucial role in the present context. To 

5 The first paper dealing with the problem from this point of view seems to be that of 
Lebowitz and Rubin. (5~ Further references can be found in a recent work along these 
lines.~6~ 

6 We are indebted to Prof. M. S. Green for bringing this reference to our attention. 
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clear up existing ambiquities as to the treatment of fluctuating forces at 
boundaries, we rederive the fluctuating equations in Sections 3 and 4. It is 
shown that d i f f e ren t  consistent interpretations exist for the fluctuating forces 
with boundaries present. Moreover, the simplest choice is not the one 
commonly made. 

In Section 5 and 6 we consider the contraction of the description to the 
level of the dynamical variables of B alone. These variables include the 
angular velocity gt(t) as well as U(t). One could, of course, decouple rotations 
and translations from the outset by restricting one's attention to particles with 
certain symmetries, in particular, to spheres. 7 In the context of contractions 
from fluctuating hydrodynamics, however, it seems a matter of principal 
interest to discuss the procedure for arbitrary shapes. Decoupling is thus 
precluded. For  this general case, then, we prove in Section 6 the fluctuation- 
dissipation theorem laS) for the (in general) non-Markovian Langevin equa- 
tion on the contracted level as a consequence of the corresponding theorem 
for the Markovian description given by fluctuating hydrodynamics. Further- 
more, the symmetry of the friction tensor is proved in general without appeal 
to arguments outside our purely phenomenological model. In the realization 
of this program the appropriate Green's identity is instrumental. 

After this investigation of the general features of the contraction, we turn 
in Section 7 to explicit calculations on the degenerate example of the sphere. 
The results, and their connections to related theories, are finally discussed in 
Section 8. 

2. T H E  L I N E A R I Z E D  N A V I E R - S T O K E S  D E S C R I P T I O N  

The standard Navier-Stokes equation describing the flow of  an in- 
compressible fluid in a volume V reads (3) 

p(~/Ot + u �9 V)u  = - - V p  + ,q V2u 

with (5) 

V . u = O  

for x ~ V. Here u(x, t) is the velocity field of the fluid and p(x, t) the deviation 
of  the hydrostatic pressure field from its equilibrium value P0 �9 The constant 
mass density of the fluid is denoted by p and its viscosity by 7. 

A body immersed in the fluid obeys the equations of motion 

m dU~/dt - .  Fr J~j dQ~/dt = M,~(t) (6) 

This restricted problem is considered in a recent paper, cz4> 
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where summation over repeated indices is implied. As before, U and s~ are 
the velocities of  the body and m and Jij its mass and inertia tensor, respec- 
tively. The force F and torque M exerted on the body by the fluid are given in 
terms of  the stress tensor 

{ 8u~ auj 
(7) 

a s  

F~(t) : - f~ dS  ~j(u, p) nj (8) 

Mi( t )  = - j ;  a s  ~ [ x j  - xj(t)] G~zn~ (9) 

Here n(x) is the unit vector normal to the surface S at x pointing out of  the 
fluid, i.e., into the body. The Levi-Civita symbol elj~ is antisymmetric in all 
indices, and Elz 3 = 1. The position of the center of mass of  the body is 
denoted by X(t). 

To complete the description, the boundary condition for u(x, t) on S is 
needed. We shall adopt the "stick" condition which says that 

u(x, t) = u q )  + a ( t )  x Ix - x( t ) ]  (lO) 

for x ~ S. It is further assumed that u(x, t) is everywhere bounded. 
We then proceed to linearize the above set of equations. The rationale for 

linearization in this case is twofold. First, while the linear Langevin theories 
pose no basic difficulties, their generalizations to nonlinear processes are 
known to be problematic/~6) Second, from a more practical point of view 
it is easy to check that in the context of Brownian motion, nonlinear effects 
are numerically negligible under typical circumstances. 

The effects of  linearization in u, p, U, and ~ on the equations above are 
the following: (i) The convection term on the left of  (5) is dropped. (ii) The 
position X(t) of the body, which apart from a trivial constant is the time 
integral of  U(t), gives rise to nonlinear terms in (9) and (10). Consequently, X 
is dropped. Off) For  a body of arbitrary shape, rotations will cause the surface 
S to change in time with respect to a nonrotating frame. This again [in 
(8)-(10)] gives rise to nonlinear terms which for consistency should be 
neglected. Points (ii) and (iii) can be restated equivalently as follows: The 
frame of reference can be changed to one fixed to the body. The inertial and 
convection terms resulting from this transformation are nonlinear and 
should be neglected. Consequently, the velocities should still be measured 
with respect to the stationary frame. 
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The linearized set of equations then reads 

p eu/e t  = --Vp + ~V2u 

m dU~/dt = F~ = - - ; s  dS  eli(U, p) n j  

Jij d.Q~/dt = M i  -~ - -  f s dS  eijkxjcr~(u, p) nz  

with the constraints 

V "u(x, t) = 0 for x ~ V  

u(x, t) = U(t) + a ( t )  X x for x ~ S 

(11) 

(12) 

(13) 

(14) 

(15) 

The next step is to regard Eqs. (11)-(13) as the equations for the averages 
of  u, U, and ~ and to add random force terms on the right to get stochastic 
equations for the fluctuating velocities. The forces are constructed by appeal 
to the analogous case of the finite-dimensional Gaussian Markov process to 
which the subsequent section is devoted. 

3. T H E  G A U S S I A N  IV iARKOV PROCESS 

In this section we shall briefly recall the properties of a finite-dimensional 
Gaussian Markov process a(t),  where a stands for the coloumn vector 
{al ..... a,}. The contact with physical systems as provided by nonequili- 
brium thermodynamics will be made in the standard way and the results 
put in a form convenient for our purposes. 

The process a, for which the equilibrium average {a> vanishes by defini- 
tion, is assumed to obey the linear Langevin equation 

da/dt  = - - G a  + g (16) 

where G is a matrix of no particular symmetry, the eigenvalues of which 
have positive real parts. Since a is Markovian, the spectrum of  the random 
noise g must be white, and since a Gaussian a implies a Gaussian g, the 
random forces are completely specified by the correlation matrix 

( g ( s )  i f ( t ) )  = 2Q ~(s - t) (17) 

where gr  denotes the transpose of g and Q is a symmetric, positive-semi- 
definite matrix. 

The stationary solution of (16) is 

a(t)  = f ~ ds e-Ct-~l~g(s) (18) 
o~ 
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from which the equilibrium correlations follow as 

R ~ ( a a r )  = 2 dr  e x p ( - - r G ) Q  exp(---rG r) (19) 

where we have used (17). On the other hand, since a is assumed to be 
Gaussian, its equilibrium distribution must be of the form 

W(a) = const • exp(-- �89 (20) 

where E is a symmetric matrix. If  R can be inverted, then clearly 

E = R -a (21) 

On the other hand, (19) and (21) show that E, G, and Q are not inde- 
pendent, and their interrelation is What amounts to the "fluctuation-dissi- 
pation theorem" on this level. Its most attractive form is obtained by partial 
integration of (19) which, together with (21), yields 

2Q = GE -1 -+- E-ZG r (22) 

In this context (22) should be considered the prescription by which the appro- 
priate random forces in the Langevin equation (16) are constructed. 

As is evident from Section 2, we shall 'be interested in processes where 
the components fluctuate subject to some linear constraints [see Eqs. (14) 
and (15)]. The matrix R is then singular and defines a null space .~ by Ra = O. 
Equations (20) and (21) are clearly meaningless for a e .~. These relations 
will, however, only be used for a in the orthogonal subspace A where R -z is 
defined in the ordinary way (R-1Ra = R R - l a  ~- a), and the singular nature 
of R thus creates no problems. 

The contact between the purely formal development up to this point and 
a wide class of physical systems is provided by the postulates of nonequili- 
brium thermodynamics. These postulates offer a physical interpretation of 
the matrices E and G and by (22) permit the construction of the random forces 
appropriate to the system. 

The first postulate relates E to thermodynamics by stating that the 
stationary probability distribution W(a) of the fluctuating quantities {az .... a,~} 
is given for closed systems as 

W(a) = const • eZS/k (23) 

Here AS(a)  is the deviation of the entropy from its equilibrium value S(0) 
and k is Boltzmann's constant. Comparison with (20) yields 

AS(a)  = -- �89 (24) 
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The second postulate is the well-known regression hypothesis: The 
fluctuations decay on the average according to the linear macroscopic laws. 
Instead of direct comparison between the equations of motion, however, a 
procedure involving the entropy production d(AS)/dt  is more convenient for 
our purposes. From (24) one has 

d A S  k Ida r da 
dt --  2 [--di- Ea -j- arE-d i - )  (25) 

The regression hypothesis here amounts to the interpretation of the time 
derivatives on the right of (25) as being given by the averaged equation (16), 
and on the left as having the meaning defined by the linear macroscopic 
laws [Eqs. (11)-(15) in our case]. 

Use of the averaged equation (16) in (25) gives 

d(AS)/dt  = �89 4- EG)a (26) 

and appeal to (22) yields the simple result 

d(AS)/dt  = karEQEa (27) 

Since the left-hand sides of (24) and (27) are easily deduced from the 
thermodynamics and the transport properties of the system, and since Q 
follows directly from (27) when Ea is known, these two equations form a 
particularly convenient basis for the construction of the random forces. 

4. C O N S T R U C T I O N  O F  T H E  R A N D O M  FORCES 

We are now ready to return to the specific problem announced at the 
end of Section 2: the construction of the random forces appropriate to the 
system consisting of a Brownian particle immersed in an incompressible 
fluid. The basic object to be defined is the random variable a(t), which now 
stands for the column vector (of infinite dimensionality) 

a(t) = {u(x, t), p(x, t), U(t), a(t)} (28) 

The subspace A in which a(t) is constrained to fluctuate is defined by the 
relations (14) and (15). 

For the identification of E we need an expression for the entropy. In a 
fluctuating, incompressible fluid the reduction of the entropy from its maxi- 
mum value is caused by conversion of internal energy into the kinetic energy 
d ~ associated with the fluctuations, i.e., 

A S  = - - E I T  

--  ( 1 / T ) ( � 8 9 1 8 9 1 8 9  (29) 
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Comparison of (24), (28), and (29) shows that Ea has the form 

Ea = (1/kT){pu(x, t), 0, mU, Jft} (30) 

for a ~ A .  
The entropy production in an incompressible fluid follows from hydro- 

dynamics ~3) as 

dAS  ~u~ ~ui Oui eus D(u,u) (31) 
~xs ~x~ ~x~ 

where D(u, u), according to (29), is the rate of  dissipation of  kinetic energy 

D(u, u) = --c10/at (32) 

The basic equation (27) can then with the aid of  (I7) and (31) be put in 
the form 

at(t) E(g(t) gr(t')) Ea(t') = 23(t -- t') D(u, u)/kT (33) 

for a ~A. 
The remaining problem is the interpretation of  (33) as defining the 

random forces that should be added to Eqs. (11)-(13). For convenience we 
write 

g(t) = {p-if(x, t), 0, m-lK(t), J-1L(t)} (34) 

which amounts to adding the fluctuating forces f(x, t), K(t), and L(t) on the 
right-hand sides of  Eqs. (11)-(13), respectively. With the convention (34), the 
crucial quantity on the left of  (33) becomes, by (30), 

arEg = (1/kT)L~ If  d ~ x u ' f  + U ' K  + ~ "L] (35) 
V 

The simplest choice for f, K, and L that satisfies (33) is 

K = L - -  0 ( 3 6 )  

while the correlations of f are determined by 

U) 
(37) 

for an arbitrary field u(x) satisfying (14) and (15). 
This is not the only possible interpretation of  (33), however, nor is it the 

standard one. It is customary to base the discussion on a random stress tensor 
&k(x, t) rather than on the force, which is then given by the divergence 

A(x, t) = ~si~(x, t)/~x,~ (38) 



268 E. H, Hauge and A. lVlartin-L~f 

By Gauss's theorem, the integral in (35) can be written 

Osi~ = f s u s o d S u , s i k n k _  fv  ~u, f v d3x ui ~xx d3x ~ six (39) 

where ~ dS goes over the surface S of the Brownian particle and over the 
large outer surface So. 

In terms of six one can thus satisfy (33) by the stipulation 

K = L = 0 (40 )  

six(x, t) = 0 for x e S w So (41) 

whereby the last term in (39) inserted into (35) and (33) yields 

(six(x, t) sn(x', t ')) = 2kT~l~(t -- t') 8(x -- x')[8~jSx~ + 3i~x~-] (42) 

for x, x' e V but x, x' r S w So. Equation (42) is, of course, the standard 
formula (8) specialized to the case of an incompressible fluid. 

There exists an alternative to (40)-(42) however, due to the constraint 
imposed by the boundary condition (15) on S. I f  one disregards the contri- 
bution to (39) from So and uses (15), the surface integral in (39) can be put in 
the form 

U~ fsdS sixnx + X?~ fsdS eijxxjsun~ (43) 

Comparison with (35) and (12)-(13) then shows that by defining 

K~ = -- f s dS sixnx (44) 

L~ = -- f s dS eijxxjsxznt (45) 

and letting (42) be valid for x, x '  ~ V, x, x '  E S included, one again satisfies 
(33). 

These two distinct possibilities on the choice of s~x, K and L, have not 
always been recognized as such in the literature, and a measure of obscurity 
has resulted. In our opinion it is safer, and indeed simpler, to abandon the 
use of sie altogether and base calculations on f, K, and L as defined by 
(36)-(37). 

5. C O N T R A C T I O N  O F  T H E  D E S C R I P T I O N  

We shall now turn to a study of the contraction from the Markovian 
description of the system in terms of the infinite-dimensional vector a(t) = 
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{u(x, t),p(x, t), U(t), ~(t)} to a description in terms of the six-component 
quantity 

b( t )  = {U(t), s2(t)} (46) 

i.e., we shall eliminate explicit consideration of the fluid variables to produce 
stochastic equations for the dynamical variables of the Brownian particle 
alone. The classical Langevin equation for Brownian motion will then emerge 
as a limiting case. The equation of motion for b( t )  is, however, in general 
non-Markovian, as should be expected. 

The first task is to show how the fluid variables can, in principle, be 
eliminated. To this end one splits u, p into a systematic and a random part, 

u(x, t) = fi(x, t) + fi(x, t), 

which obey separate equations, 

p 8fi /St  - --V/5 + ~V2fi 

V ' f i ~ - 0  

a(x, t) = u(t)  + a(t)  x x 

and 

p(x, t) = p(x, t) +/~(x, t) (47) 

(48) 
for x ~ V  

(49) 

for x ~ S (50) 

o ea/ot = - v / ~  + vv~a + f (51) 
for x s V  

V.  a - 0 (52) 

f i ( x , t ) = 0  for x ~ S  (53) 

One further assumes that fi(x, t),/5(x, t) -+ 0 as I x I --~ 0% and that fi(x, t) is 
everywhere bounded. Addition of the two sets of equations leads of course, 
back to Eqs. (I1), (14), and (15) with the random force added to (11). The 
important property of the above splitting is that fi(x, t), fi(x, t) only depends 
on U(s), ~(s) for s ~< t, and fi(x, t), i~(x, t) only on f(x', s) for s ~< t. It is an 
immediate consequence that the quantities in (51)-(53) are i ndependen t  a4) of 
those in (48)-(50). 

Since the force F(t) and torque M(t) on B, as given by (12) and (13), 
depend linearly on u and p through the stress tensor c~ij, one can also split 
those quantities in such a way that ~'(t) and 1Vl(t) are given by a~j(fi, fi) at t on 
S, and P(t) and l~(t) similarly follow from crij(fi, ~). 

Solving (47)-(50), one can then in principle obtain F and ~7I as linear 
functions of U and ~:  

/ F i ( t )  = - -  ds  [yi~(t - -  s )  Uj (s )  + (~i~(t - -  s)  s (54) 
co 

t 

= - - f  ds  [~bis(t - -  s )  Uj(s )  + ~ig(t - -  s )  O~(s)] (55) ~ i ( t )  
co 
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where 

( ~(t) -~ F(t)  (56) 
~b(t) tz(t)] 

plays the role of a 6 • 6 friction tensor (nonlocal in time). Its explicit form 
depends on the geometry of the Brownian particle, and is known in simple 
cases. As we shall see, all that is needed in the context of the fluctuation- 
dissipation theorem is its symmetry, proved in Appendix B. 

Defining the six-dimensional force h = h -k ~ by 

h(t) = {F(t), M(t)} (57) 

where F(t) and M(t) are defined by (12) and (13), and the 6 x 6 inertia 
tensor L by 

one can then on the basis of the above considerations write the generalized 
Langevin equation in the compact form 

L db/dt -~ h(t) = --~ ds I'(t  -- s) b(s) + h(t) (59) 
- - 0 9  

Since (59) is non-Markovian (except in limiting cases, see Section 8), it is of 
particular interest to verify that the fluctuation-dissipation theorem relating 
/~(t) to the (nonwhite) spectrum of i/follows from the corresponding statement 
(37) on the (Markovian) level of a(t). 

6. GREEN'S  I D E N T I T Y A N D  T H E  F L U C T U A T I O N - D I S S I P A T I O N  
T H E O R E H  FOR T H E  C O N T R A C T E D  D E S C R I P T I O N  

In this section we prove that the fluctuation-dissipation theorem on the 
level of b(t) follows from that on the level of a(t). The tool needed to construct 
this proof is a Green's identity for solutions of Eqs. (48)-(50) and (51)-(53) 
This identity is proved in Appendix A and reads as follows: If  fi, p satisfy the 
former equations for some prescribed motion of B, i.e., with given b(t), and 
fi, i~ the latter, and they are suitably bounded, then 

where 

~Tik = ~i~(fi(x, t),/5(x, t)) (61) 
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If (50) is inserted on the left-hand side of (60) (--= I) and use is made of the 
definitions of P and l(,I [(12), (13), and splitting as stated above (54)], one 
finds 

I = -- dt dS [Ui(--t) + eij~'2j(--t) X~] 5i1~nk 
oo (62) 

fo = dt [U(-- t )"  ~(t) + n ( - - t )  �9 l~I(t)] 
- c o  

Introducing the notation of  (57), one can consequently rewrite (60) as 

I=~ -~odtbr(--t) f~(t)= .-~dt vd3x f i ( x , - - t ) ' f ( x , t )  (63) 

The mean square of (63) is then 

( I  s) =- ~ ds dt br(--t)<f~(t) /~r(s)) b(--s) 
- - o a  

- - o o  

- 2 k T  dt  D(f~(t), •(t)) (64) 
* - - o o  

where (37) has been used and the substitution t - -~ - - t  made in the final 
expression. Since by (32), D(a, fi) is the rate at which the total kinetic energy 
ec(t) associated with the solution fi(x, t) is dissipated, the last integral in 
(64) equals 

-- (_~ dt br(t) ,~(t) -~(~) +~(-oo) j~ 

If the given velocities U(t) and r of  the Brownian particle vanish 
as t -~ -- oo and if the total energy put into the fluid by B is finite, then 

&(-- ~ )  = g ( +  m) ---= 0 (65) 

Use of  the expressions (54)-(56) for the drag h(t) then yields 

dt D(fi, fi) = f f  dt ds br(t) U(t -- s) b(s) (66) F 
t > ~ s  

On the other hand, from (63) it follows that, due to the symmetry s ~- t, 

<I s) = f f  ds dt br(t)(h(--t)/~r(--s)) b(s) 
- ~ o  

(67) 
= 2 f f  ds dt bV(t)(h(O) ~r(t s)) b(s) 

t ~ s  
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where the time translation invariance of the equilibrium average has been 
used. Since b(t)  is an arbitrary function at our disposal, comparison of 
(64), (66), and (67) gives 

(/~(0)//T(t -- S)) = k r l ' ( t  - -  s) (68) 

for t >/s. 
Equation (68) is almost the relation we seek. What is missing is clearly 

the corresponding statement for t ~< s. The gap is filled in Appendix B, where 
we prove, on the basis of  Green's identity, that jr, is a symmetric matrix, i.e., 
/~r = F. As a consequence, we have 

(/~(0)/~r(t --  s)) = (/~(t -- s) fiT(0)) = (/~(0) /~r(S -- t))  (69) 

where again the time translation invariance of an equilibrium average was 
used in the second step. Combination of (68) and (69) finally yields 

(/~(0)/~r(t)) = kTl"(I  t I) (70) 

for all t. 
The relation (70) is the appropriate fluctuation-dissipation theorem 

expressing the autocorrelation of the six-component random force /~(t) in 
terms of the friction matr ix / ' ( t ) .  It has been proved here for arbitrary shape 
of the Brownian particle and by arguments completely within our chosen 
phenomenological framework. In particular, no reference to the time reversi- 
bility of the underlying microscopic equations has been made. 

The reasoning leading from (68) to (70) plays, in fact, the role of an 
inverse Onsager argument. (m Here the symmetry o f / "  is deduced from the 
averaged equations of motion, and is subsequently used to prove the reversi- 
bility (69) of the random force. 8 

7. E X A M P L E .  T H E  S P H E R I C A L  PARTICLE  

In the previous section we proved the fluctuation-dissipation theorem 
for the six-dimensional process b(t)  = {U(t), g(t)}. From the point of view 
of explicit calculations the problem is thus essentially reduced to that of 
finding the friction tensor / ' ( t ) ,  obtainable from Eqs. (48)-(50) for the average 
motion. Since the calculation of  r '  is a problem in classical hydrodynamics 
and is not of central concern in this paper, we shall be content with quoting 
the results for the case of maximum degeneracy, namely the sphere. 

These results have been known for a long time? Their relevance to the 

8 All components of h are trivially odd functions of the momenta in the (N + 1)-body 
Hamiltonian. 
See Lamb. t18) In particular, the equivalent of (72) was found by Stokes in 1851. 
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problem of Brownian motion, which was pointed out by Lorentz, ~7) has only 
recently been appreciated, however.~a,la) They will be restated here as provid- 
ing a concrete example within the general formalism, but also because they 
will facilitate the discussion of the connection between our approach and 
related work, and will enable us to check the validity of  certain approxi- 
mations commonly made. 

Define the functions 

co 0 

f+(oa) = ~ dt e i~ f ( t ) ,  f - (oa)  ~- I ~ d te i~  (71) 
~o oo 

Thus, f (co) = f+(o)) + f-(~o) is the Fourier transform o f f ( t ) ,  and f +(/z) is its 
Laplace transform. For a spherical particle both the inertia tensor L and the 
friction tensor F(t)  are trivially diagonal. With reference to Eqs. (54)-(56) and 
to (71) a standard calculation (~) yields (see footnote 9) 

~+.(co) ~ 3~j~(co) = 3~j6~r~R[1 + R(--ico/v)  ~/2 - -  (ioaR~/9v)] (72) 

~+ ., [ ic~ ] 
I%(oa) -~ 8~dx(co ) = 8~8zwR  3 1 - -  1 + R(--ho/v)~/~- (73) 

r = r = 0 (74) 

where we have used the fact that, as a result of causality, 9)- = t2- = 0. 
Furthermore, R is the radius of the particle, v = ~?/p is the kinematic viscosity 
of  the fluid, and (--i~o)1/~ is uniquely defined by a cut along the negative 
imaginary co axis. 

From (72)-(74) it follows that all components of b(t) are independent and 
that rather than the generalized Langevin equation (59), one can study the 
two scalar equations 

L in ~7(t) = --  ds ~,(t - -  s) U(s) + F( t )  (75) 
oo 

Jx)(t) = - f ~  ds t~(t -- s) ~(s) + ~( t )  (76) 
o o  

where we have written J~j ---- 8;jJ and where U, _P and f2, ~ denote any 
component of  the corresponding vectors. 

Since the autocorrelation functions of  the fluctuating forces depend on 
the time difference only, one has 

(f(~o) Aco')) = Cr(~o) 8(~ + ~')  (77) 

where CF(co) is the so-called power spectrum of/7, defined as the Fourier 
transform of the autocorrelation CF(t) = @ ( 0 ) F ( t ) ) .  From the fluctuation- 

8221713 -6 
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dissipation theorem (70) the spectra of/~ and 3~r are given in terms of the 
friction kernels as 

r = kT[r + ,2(--~o)] (78) 

CM(co) = -  kT~(~o) +/2(--co)] (79) 

The corresponding spectra of the stationary processes U and s are derived 
by taking the Fourier transforms of (75) and (76) using (77) to get 

Cu(C~) = [~r(oJ)/[ --iwm + ~(oJ)[ 2] = {kT/[--ioJm -~ 93(co)]} + c.c. (80) 

do(~o) = {kT/[--koJ +/2(co)]} + c.c. (81) 

where c.c. stands for complex conjugate. 
The transformation of (80)-(81) to time language with ~,/2 given by 

(72)-(73) is carried out in Appendix C. For long times t the asymptotic 
results are 

Cu(t) ~ ~(kT/p)(47rv It  [)-3/z (82) 

Ce(t) ~ ~r(kT/p)(4~rv I t I) -5/~ (83) 

The values at t = 0 give the mean square fluctuations of U and f2, which are 
found to be 

Cry(O) = kT/(m + 2~rR3p/3) (84) 

Co(0) = kT/J  (85) 

Some comments on the above results are in order: 

1. In this paper we have treated the fluid surrounding B as incompres- 
sible. For real fluids this amounts to an approximation which is valid for 
sufficiently slowly varying phenomena. In particular, the first two terms in the 
expression (72) for the friction p(iz) = p(~o) remain valid for compressible 
fluids. As can be seen from Appendix C, it is these two terms that determine 
the asymptotic decay (82). 

2. The effective mass which occurs in the variance (84) is an artifact 
of the model, however. Its derivation depends on the third term in (72), which 
is not correct with finite compressibility. From statistical mechanics one 
knows, of course, that the exact result for the variance is kT/m, 

3. Since pure rotations of a sphere do not couple to longitudinal sound 
waves, the results (73) and (85) remain valid for a compressible fluid. 

4. The above calculations were based on the stick boundary condition. 
The "slip" condition, which states that tangential forces on the boundary 
vanish, would lead to different coefficients in (72). It would not, however, 
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influence the asymptotic decay (82). In fact, any condition intermediate 
between stick and slip would yield the same asymptotic decay, coefficient 
included, lo 

8. D I S C U S S I O N  

The contraction from the Markovian description of a Brownian particle 
immersed in a fluctuating fluid produced the non-Markovian Langevin 
equation (59) for the dynamical variables of B. This is the general situation: 
Contractions of Markovian descriptions produce non-Markovian ones. 
The crucial question is rather under which circumstances the contracted 
description is again Markovian to a sufficient approximation. 

The condition determining when the non-Markovian equation (75) 
reduces to (one component of) the classical Langevin equation (1) can be read 
off (80) with the aid of (72). When only the constant term in (72) is kept, 
(75) coincides with the classical equation, and (80) has a simple pole at 
~o~ = --i~,(O)/m. This pole determines the characteristic time scale of the 
velocity fluctuations and on this scale the second (and third) terms in (72) 
can be neglected provided that (7,~,14~ 

1 >~ R[c%,/v I1/2 = [~p/(3m/4~rR~)]l/2 = (~p/pB)l/~ (86) 

The numerical coefficient in (86) is a result of  the spherical geometry. The 
qualitative conclusion that the ratio of the mass densities is the crucial 
parameter is, however, of general validity. 

There is nevertheless no contradiction between the above results and the 
formal theories, c~ from which the classical Langevin equation (1) emerges as 
correct to lowest order in (rnl/m) 1/~. In those theories one keeps the mass ms 
of the fluid particles, the density, and the interaction (in particular the radius 
of  the Brownian particle) fixed when passing to the limit m -+ oe. In that 
limit both (mr~re)a~ ~ and (p/p~)l/2 become small. 

The distinction between the two parameters is significant in practice, 
however. The mass density ratio shows that the classical Langevin equation 
offers a good description of, say, solid dust particles in air (with due account 
taken of the presence of gravity). But it does not apply to pollen in water, i.e., 
to Brownian motion in its historically accurate meaning. 

Also, no matter how small p/PB is, (75) with (72) leads to the asymptotic 
result (82) rather than to an exponential decay. But as p/pB decreases, the 
time T at which the exponential decay yields to (82) increases. When ~- has 
become so large that m C u ( r ) / k T ~  1 the non-Markovian effects can be 
neglected. 

~o This follows, for example, from the results of Zwanzig and Bixon. (1~ 
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From the general assumption that an essentially arbitrary initial state 
rapidly evolves into one close to local equilibrium, Ernst et aL m,z9) showed 
that the molecular time correlation functions have tails ~t-z/2.  A straight- 
forward application of their method to the (N + 1)-body problem yields the 
asymptotic formula 

CtT(t) ~ ~(kT/p)[4rr(v q- D)I t l] -3/2 (87) 

where D is the diffusion coefficient of the Brownian particle? ~ Comparison 
shows that (87) is identical with our result (82) 12 except that v has been 
replaced by (v § D)? z This discrepancy should not be surprising. It is clear ~9) 
that a purely macroscopic theory like the one presented in this paper will not 
embody the effects represented by D in (87). This is not a fatal flaw, however. 
For  Brownian particles larger than molecular size, D/v ~ 1. Our continuum 
theory is thus an approximation correct to zeroth order in D/v. 

The importance of the last remark becomes apparent when one compares 
the formula (72) for ~(~o) and the work of Refs. 11 and 19. From those papers 
it follows that in three dimensions all transport coefficients have a first 
correction term ~ ~/~. This correction to the viscosity would compete with 
the crucial second term in (72). However, one can show that the viscosity 
correction as compared to this term is of relative order D/v. Consistency thus 
requires that it should be neglected. 

It is important to realize that both the classical Langevin equation (1) 
and the corrected version (75) contain the Einstein-Smoluchowski theory as a 
limiting case when t >~ ~(O)/m. In that theory the single parameter deter- 
mining the evolution of the probability density P(r, t) of  B in space is the 
diffusion coefficient. From Einstein's work ~la) one knows that 

f0" D = dt (U(0) U(t))  = �89 (88) 

which, by (80), yields 

D = kT/~(O) = kT/6mTR (89) 

This celebrated relation is thus a consequence of (75) as well as of (1), and the 
classical experiments cannot distinguish between the two. 

In conclusion, we therefore point out that the non-Markovian effects 
beyond the Einstein-Smoluchowski limit represent a standing challenge to the 
experimentalists ! 

zl The corresponding argurnent for Co(t) has been made by Ailawadi and Berne.C~0~ 
z~ The coefficient in the corresponding result of Ref. 8 is not quite correct, due to incon- 

sistent treatment of the effective mass. 
z3 On this background the independence of (82)-(83) on the details of the boundary con- 

dition and on the compressibility becomes clear. 



Fluctuating Hydrodynamics and Brownian Motion 277 

A P P E N D I X  A.  P R O O F  O F  G R E E N ' S  I D E N T I T Y  

Let fi,/5 be a solution o f  Eqs. (48)-(50) for  some given U, s2, and let 
fi,/3 be a solution o f  Eqs. (51)-(53) for  some given f, not  necessarily random. 
Then one has 

P / *  
,dr =- p Jvd~x ~(x, - -  T) �9 ~(x, T) - -  p Jv dax fi(x, T ) "  fi(x, --  T) 

= f:r  dt fvdax [fi �9 (V/3 --  ~TV2fi) + fi ' (--Vfi q- ~/W'fi + f)] (A. 1) 

The following identity holds: 

U '  V2U - -  U* V2U = ~Xk ~/2i ~Xk - -  Ui WaXk ) (A.2) 

and s i n c e V . f i  = V . f i  = 0 ,  

f t .  V/~ --  f t .  V~5 = V .  (pfi --/~fi) (A.3) 

ex~ ) = 0 (A.4) 

Use of  (A.2)-(A.4) in (A. 1) and Gauss 's  theorem gives 

f dt fvdaxr,'f + _ 

or, by the definition of  the stress tensor (7), 

A r = f ~ ' d t f  dS[Or162 d a x " ' f  
-r sus o v 

(A.5) 

The contr ibut ion f rom the outer  surface S o can be made to vanish if one 
imposes the boundary  condit ion fi = fi = 0 on S o and regards the two 
solutions as the limits o f  the corresponding solutions when the volume goes 
to infinity. The volume integration then extends over the entire space except 
that  occupied by B. 

To  prove (60) f rom (A.5), one first notes that  the second boundary  term 
in (A.5) vanishes since fi = 0 on S. It remains to be shown that  the left-hand 
side o f  (A.5) vanishes as T---~ oo. Since Ar  is a r andom variable, this amounts  
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to proving that l imr.~(Ar ~) -----0. Let U ( t ) - - a ( t ) =  0 for t < - - T o ,  
where To is some large but fixed t. It follows that u(x, t) = 0, fi(x, t) = 0 
for t < --To. Thus, for T > To only the lower limi t contributes to Ar : 

Ar = --p fv d3x fi(x, T)" fi(x, - - r )  (A.6) 

Consequently, 

(A r z) = p~ ;v dax dax' ~r T) ~s(x', T)(ai(x, -- T) g~(x', -- T)) (A.7) 

The average in (A.7) represents an equilibrium correlation function. 
Furthermore, since -- T < -- To, fi(x, -- T) = 0 and fi(x, -- T) = u(x, -- T). 
It is therefore tempting to go back to the expressions (28) and (30) for E 
which, by (19) and (21), define such correlation functions for all a e A. Here, 
since -- T < -- To, we are interested in the case with the additional constraints 
U =  ~ = 0 ,  s o t h a t u = 0 o n S a s i d e f r o m V ' u = 0 .  

From (28) and (30) one immediately concludes that 

(u~(x, --T)uj(x', - r ) )  =/~ro-l~i~ ~(x - x') 

which inserted in (A.7) gives 

(A~)  = kTp ~ d~x l a(x, T)I ~ (A.8) 

Since (A.8) is proportional to the total kinetic energy in the fluid at time 
T, and since energy, according to (32), is dissipated at the rate given by 
D(fi, fi), it follows that 

lim (AT ~} = 0 
T~oo 

provided that the total energy put into the fluid by the prescribed motion 
U(t), ~(t) of B is finite. This completes the proof of (60). 

Rather than base the argument on the analogy with the finite-dimensional 
process, one could also derive (A.8) by using nothing but the equations of 
motion (48)-(53) and the prescription (37) for the random forces. This 
derivation, which again makes use of (A.5), is, however, somewhat involved, 
and for that reason we shall be content with the simple argument given above. 

In Appendix B a slightly different version of Green's identity will also be 
needed. In that case (fi, ~) ----- (u, p) and (fi, i~) ~ (u', p') are both solutions of 
Eqs. (48)-(50) for the average motion. If  one stipulates that for both solutions 
the corresponding U(t), ~(t) vanish for t ~< - -T  o and if T > T o , then by its 
definition (A.1), Ar = 0. Thus (B.1) of Appendix B immediately follows. 
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A P P E N D I X  B. P R O O F  O F  T H E  S Y H M E T R Y  O F  r 

At the end of  Appendix A Green's identity was proved in the form 

dt d S  [u/(x, t)  crik - -  ui(x,  - - t )  Cr}~,] n,~ = 0 (B.1) 
- - o o  

where 

~ri~ = (rik(u(x, --t) ,  p(x, -- t)), g;k = O'ik(llt( x, [),/)'(X, t)) 

Here u, p and u', p '  are both solutions of Eqs. (48)-(50). Use of the boundary 
condition (50) in (B.1) gives 

f fs dt d S  {[Ui'( t)  @ e i jS2 / ( t )  xt] crik - -  [U i ( - - t )  @ ~ij~Qj(--t) xz] o'$k} rile 
- - o o  

f? = - -  d t  [U'(t) �9 F(- - t )  + a ' ( t ) .  M(-- t )  -- U(- - t )  �9 F ' ( t ) - -  a ( - - t )  " M'(t)] 
co  

= - - f  ~ dt [b'r(t)  f i ( - - t )  - -  b r ( - t )  h'(t)] = 0 (B.2) 
co  

After the substitution t - -~ - - t  in the first term, this can, with the aid of 
(54)-(56), be written as 

..(f d, a,  b'~(-- ,)  C(,  --  ~) b(,) = f f  dt ,~ bT(--t)  r ( ,  - ~) v(~) 

Change of  variables - - t  -+ s, s --+ - - t  on the right-hand side of (B.3) yields 

f f  dt ds b ' r ( - - t )  f ' ( t  - -  s)  b(s) = f f  dt  ds b ' r ( - - t ) /~r( t  - -  s)  b(s)  

,~>~ t~>~ (B.4) 

and since b ' ( - - t )  and b(s) are arbitrary functions, one concludes that T' is a 
symmetric matrix: 

P~(t) = F(t), t ~> 0 (B.5) 

Note that in this proof, which was based on the Navier-Stokes equation 
alone, no special assumptions on the shape of the body were invoked. 

A P P E N D I X  C. T R A N S F O R M A T I O N  O F  (80)-(81) 

In this appendix some of  the details in the derivation of (82)-(85) from 
(80)-(81) are given. The transform of (80) reads 

1 F ~ t k T  c.c.t (c.1) 
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Since v(t) is a real function, p(--oJ) = p*(co). Furthermore, since the system is 
dissipative, the first term in (C.1) has no singularities in the upper half co 
plane [cf. (72)]. For  t > 0 (t < 0) the contour of integration can be closed 
in the lower (upper) half co plane and consequently the second (first) term in 
(C.1) does not contribute. For  t va 0, therefore, 

k T  f~r e-~i  tl 
Cv( t )  = ~-~ &o -- i tem + ~, (w) (C.2) 

where cg is the contour closed in the lower half plane: 

A more convenient expression for Cu(t)  is found if one turns to the 
variable z -~ --io) and notes that the only singularity in the left half z plane 
is the cut along the negative real z axis. Deformation of the contour yields 

Cv(t) = k T  fo  l _ dz e~Ltl 
c~ zrn @ ~[i(z --  i0)] zm 47 ~[i(z @ i0)1 

(c.3) 

The asymptotic form of Cu(t)  follows from (C.5) when the denominator in the 
integrand is replaced by a ~. Thus 

fO ~ 
Cv(t )  ~-~ (kTb/zra 1 t I~/~) dy x /y  e-Y ~- w I t I)-a/2 (C.6) 

in agreement with (82). The corresponding result for Ca(t), (83), is derived in 
a completely analogous fashion. 

The variance of U, Cu(O), is most easily found by going back to (C.1), 
For  t = 0 the two terms are equal. The first term is analytic in the upper 
half-plane, so that by closing the contour, the sum of the integrals along the 
real axis and along the upper semicircle vanishes. The last integral is trivial, so 
that 

f o  o~ k T  (C.7) Cv(O) --  kTzr i d~o --ico(m + ac) --  m -k ~zrRao 

C~(0) is determined by the same method. 

Writing (72) as 

~(iz) = a(1 47 b ~/z  47 cz) (C.4) 

where a = 6~r~?R, b = R/v /v ,  and c = R2/9v = b2/9, one finds from (C.3) 

_ fo 
Cv(t)  --  kTab  dx e-~l~l (C.5) 

zr [a -- (m + ac)x] 2 + a2b~x 
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F r o m  (C.5) i t  can also be verified direct ly  tha t  Cv(t)  converges to  the 
c lass ical  Langevin  cor re la t ion  (kT /m)e-" l  ~t#~ when 9p/2pB = bZa/m = 

9ca/m approaches  zero, because then the in tegrand  in (C.5) becomes sharply  
peaked  a r o u n d  x = aim. 
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